skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ma, Tengfei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In nonmetallic crystals, heat is transported by phonons of different frequencies, each contributing differently to the overall heat flux spectrum. In this study, we demonstrate a significant redistribution of heat flux among phonon frequencies when phonons transmit across the interface between dissimilar solids. This redistribution arises from the natural tendency of phononic heat to re-establish the bulk distribution characteristic of the material through which it propagates. Remarkably, while the heat flux spectra of dissimilar solids are typically distinct in their bulk forms, they can become nearly identical in superlattices or sandwich structures where the layer thicknesses are smaller than the phonon mean free paths. This phenomenon reflects that the redistribution of heat among phonon frequencies to the bulk distribution does not occur instantaneously at the interface, rather it develops over a distance on the order of phonon mean-free-paths. 
    more » « less
    Free, publicly-accessible full text available January 6, 2026
  2. Abstract Nanomeshes, often referred to as phononic crystals, have been extensively explored for their unique properties, including phonon coherence and ultralow thermal conductivity (κ). However, experimental demonstrations of phonon coherence are rare and indirect, often relying on comparison with numerical modeling. Notably, a significant aspect of phonon coherence, namely the disorder-induced reduction in κ observed in superlattices, has yet to be experimentally demonstrated. In this study, through atomistic modeling and spectral analysis, we systematically investigate and compare phonon transport behaviors in graphene nanomeshes, characterized by 1D line-like hole boundaries, and silicon nanomeshes, featuring 2D surface-like hole boundaries, while considering various forms of hole boundary roughness. Our findings highlight that to demonstrate disorder-induced reduction in κ of nanomeshes, optimal conditions include low temperature, smooth and planar hole boundaries, and the utilization of thick films composed of 3D materials. 
    more » « less
  3. null (Ed.)